

이자율 연계파생 상품 (FRN 및 구조화채권 등)

2018

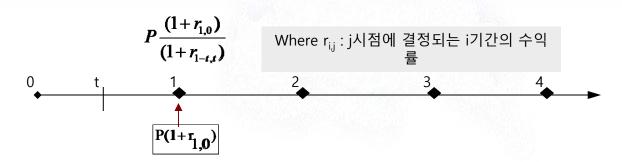
01 금리 구조화 채권 평가

FRN 평가

■ FRN: 시장가격 vs 이론모형가격

- > 시장의 거래가 정상거래로 인정되는 경우 시장거래가격 사용▷ 시장가격은 이론적 모형가격보다 크거나 적을 수 있음
- > 실거래발생 후 오랜 기간 실거래가 없는 경우, MAS를 점진적으로 축소해 나감 즉, 특정 FRN이 프레미엄 거래된 후 오랫동안 거래가 발생하지 않는 경우 프레미엄을 일부 조정 (프레미엄을 조정하지 않는 경우 실거래 발생시 가격의 jump 발생 가능)
- > 시장의 거래가 없는 경우, 이론적 모형가격을 사용, 단 MAS를 일부 반영
 MAS(Market Adjusted Spread): 유사종목의 실거래가 있는 경우 동 종목의 실거래와 이론가의
 차이인 MAS를 계산하여 실거래가 없는 종목에 일부 반영, 단, MAS 발생원인이 개별채권 유동성,
 특수성에 의한 것인지에 대한 분석 필요

FRN의 이론모형 가격


- > 기본적으로 FRN은 forward로 평가하는 것이며, par-bond approach는 forward의 변형임
- > 그러나 우리나라에서 발생되는 FRN의 경우 이자지급 기준금리가 5년만기 국민주택 1종 최종호가 수익률 1개월 평균, 5년 만기 국고채 1개월 평균, 은행프라임rate 등 다양하고 복잡하게 구성되어 각 기준금리의 정확한 implied forward를 구하기가 곤란
- > 이론적으로 implied forward 방식과 동일한 par-bond 방식을 이용하여 FRN의 가격 산정
- Dual Indexed FRN 등의 경우 Forward 방식을 이용하여 FRN 가격 산정

FRN 평가

Par bond approach

i) Next payment day의 이자 및 액면의 현재가치 계산

ii) 가산금리차의 가치 반영

- 발행시와 평가시의 가산금리 차이에 해당하는 만기까지의 현금흐름 현재 가치화
- 발행 당시 기준 채권 spot curve와 개별채권 해당등급 spot curve의 스프레드와 현재 시점의 스프레드 차이를 반영하여 유통가산금리 산출

현 가산금리차 ×
$$ex_{i}^{x}(-s_{i} \times \{0 \pm N \pm 0 \}) - 계산일 \} / 365)$$

X : 잔존 이자지급횟수 S_i 해당기간의 spot rate

iii) 장단기 금리차의 가치 반영

- 기준 금리가 장기일 경우 단기금리로 평가한 채권가치와 차익거래 기회 발생
- 따라서 기준채권의 장단기 금리차를 기간구조별로 만기까지 반영

현 장단기금리차 $\times \sum_{i}^{x}$ 각 이표일 적용장단기 반영비율(i) $\times \exp(-s_i \times \{0$ 표지급일(i) - 계산일 $\}$ / 365)

X : 잔존 이자지급횟수 S_i 해당기간의 spot rate

FRN 평가

iv) Cap과 Floor 있는 FRN

- 각각 선도금리계약의 Call option 및 Put option으로 보고 Black's Model (Modified Black Scholes Model)을 이용하여 옵션가치를 계산

```
Cap = \Sigma Caplet(i)
Floor = \Sigma Floorlet(i)
여기서,
Caplet Value = Notional / 4\times(F\times N(d1) - X\times N(d2)) \times DF
Floorlet Value = Notional / 4\times(X\times N(-d2) - F\times N(-d1)) \times DF
```

```
d1 = (\ln(F/X) + (\sigma^2/2) \times T) / (\sigma \times \sqrt{T})
d2 = d1 - (\sigma \times \sqrt{T})
F : Forward Rate for each period
X : Cap for caplet, Floor for floorlet
N() : The cumulative normal distribution function
DF : discount factor for each option maturity
```


FRN 평가 사례 : CD 기준물

■ 토지개발 287회 (2003년 10월 8일자 평가)

- **만기**: 2008-02-15(유효등급:AAA) 기준금리: CD91일물 차기 표면금리: 4.63%
- **발행가산금리**: 65bp 현재유통가산금리: 47bp
- **가산금리차** : 18bp
- 차기이자 및 원금의 현재가치 (1)
 - = $(115.75+10,000) \times \exp(-3.8153\%^* \times (2003.11.15-2003.10.8)/365)$
 - = 10,075.64원
 - * 공사채AAA의 38일 spot rate
- 가산금리차의 가치 (2)
 - 현금흐름 : 만기까지 매분기 마다 18/4 = 4.5원
 - 가산금리차 현금흐름의 현재가치(2)

=
$$\sum_{i=1}^{17} [4.5 \times \exp(-s_i \times \{(2003.11.15 + 37) \} 2 \times i) - 2003.10.8\} / 365)]$$
 =64.45 \(\text{8}\)

 S_i : 각 해당기간의 spot rate

- FRN의 가치 : (1) + (2) = 10,140.09원

FRN 평가 사례 : 장기 기준물

■ 예보채 41회 (2003년 10월 8일자 평가)

- **만기**: 2006-12-29 기준금리: 한달 5년국주1종 수익률 평균 차기 표면금리: 4.68%,
- 발행가산금리 : 0
- 현재 장단기금리차(TS): 한달 5년국주1종 수익률 평균 한달 3개월국주1종 수익률 평균
- 차기이자 및 원금의 현재가치(1)
 - = $(117+10,000) \times \exp \{ (-3.782\%^* \times (2003.12.29-2003.10.8) / 365 \}$
 - = 10,031.40원
 - * 예보채의 82일 spot rate
- 장단기금리차의 가치(2)

$$18.28 \times \sum_{i=1}^{12}$$
장단기반영비율 $_i \times \exp[-s_i \times \{(2003.12.29 + 3 \% 2 \times i) - 2003.10.8\}/365]$

= 90.23원

- S_i : 각 해당기간의 spot rate
- **FRN의 가치** : (1)+(2) = 10,121.63원

Inverse FRN 평가

개 념

일반적인 FRN과는 달리 기준금리가 상승하게 되면 낮은 이자를, 기준금리가 하락하게 되면 높은 이자를 받는 FRN

구 조

Inverse FRN에 대한 FRN의 투자 비율인 leverage를 L이라고 할 때, Inverse FRN의 가치는 다음과 같이 나타낼 수 있음

고정금리채권 = L/(1+L) Cappen FRN + 1/(1+L) Inverse FRN

Inverse FRN = (1+L)×고정금리채 가격 – L×Cappen FRN가격

Inverse FRN 쿠폰

Inverse Cap - Leverage×기준금리

평가방법

동일 만기의 고정금리채 가격을 산정한 후 cap 조건이 있는 순수 FRN의 가격을 계산하여 레버리지 비중만큼 반영하여 평가함.
 (예) 2×고정금리채 현재가치 – FRN 현재가치

Inverse FRN 평가

- Inverse FRN 가치가 고정금리채와 FRN의 합성으로 계산되기 때문에 듀레이션 역시 그 두 채권의 듀레이션과 관련됨
- FRN의 듀레이션이 '0'에 가깝다고 가정하면, Inverse FRN의 듀레이션(D)은 다음과 같이 고정금리채 듀레이션의 배수가 됨

$$D_{InverseFRN} = (1+L) \times D_{ exttt{D}_{ exttt{D}} exttt{D} exttt{D} exttt{D} exttt{D} exttt{TInverseFRN} 가치$$

Inverse FRN 평가 사례

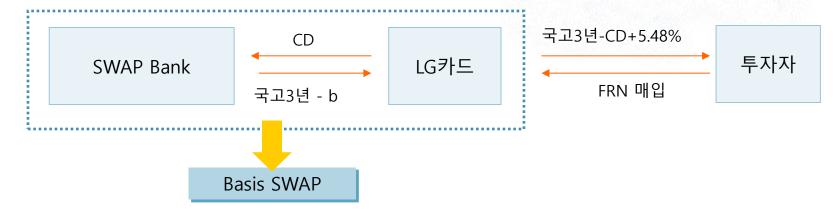
□ 발행정보

채 권 명	국민카드738회	발 행 일	2001-11-20
표준코드	KR3201033MB8	만 기 일	2004-11-20
표면금리	12% - CD91 = 7.41%	신용등급	AA

■ 무차익 포트폴리오 구성

① 순수FRN: 5,000 투자원금 ② Inverse FRN: 5,000 ③ 고정채권: 10,000
10,000
① 순수FRN: 5,000×(r +80bp) / 4 ② Inverse FRN: 5,000×(12.2%- r)/ 4
Pay-off 162.5 + 10,000 162.5 + 10,000

■ 채권평가


Inverse FRN = 2×고정금리채권 - FRN가치= 9,981원

- Dual Indexed FRN의 종류
 - 1) 장기기준금리 CD + Fixed rate
 - 2) a*장기기준금리 b*CD +(-) Fixed rate
- Dual Indexed FRN의 평가
 - □ 기준금리 및 Structure의 특성을 반영하는 한편, 다양한 변동 요인을 반영하기 위해 장기기준금리 및 CD 의 Forward curve를 이용하여 평가함.
 - (예1) 장기기준금리가 IRS인 경우(도로공사308회 등): Swap Market(IRS Market)에서 구한 시장 금리를 이용하여 Spot curve를 생성한 뒤, 매 이자지급일의 Forward rate를 역산하여 계산함
 - (예2) 2X[장기기준금리-CD]+Fixed Rate의 경우, 장기기준금리와 CD의 Forward Curve를 이용하여 평가함.
 - (예3) [장기기준금리-CD+Fixed Rate]의 경우, 장기기준금리 FRN과 이자율Swap 의 결합 상품으로 볼 수 있음. 따라서 장기기준금리 FRN을 따로 평가하고 SWAP Forward Rate을 이용한 SWAP 가치평가를 더하여 계산함.
 - □ Forward rate을 이용한다 함은 미래 시점의 coupon 등 cash flow가 정해짐을 의미함. 따라서 Forward를 이용하여 구한 미래의 cash flow를 각 등급별, 만기별 Spot rate로 할인하여 채권의 현재가치를 구하게 됨.

■ Dual Indexed FRN의 평가 구조

□ 구조1 : 실세금리 + (국고3년 – CD) - α

□ 구조2 : α×국고5년 - β×CD ± A

- Dual Indexed FRN의 평가 과정
 - □ 기준물이 IRS인 경우, SWAP Rate를 이용하여 Forward Par Rate를 구하여 평가
 - □ 기준물이 국고채인 경우, 국고채의 Forward Par Rate를 구하여 평가

- 예: 2*(IRS5년-CD)+1.0%의 평가
 - ① Money Market 및 SWAP 시장으로부터 시장수익률을 구한 뒤, Zero Coupon Spot Rate로 전환함
 - ② 미래의 이자지급 금액을 계산하기 위해서 매 이자지급 시점 T에서의 IRS5Y Forward Par Rate과 CD Forward Rate을 구해야 함

- ⓐ 현재 Zero Coupon Spot Rate로부터 IRS5Y Forward Par Rate 구하기
 - 먼저 T시점의 IRS5Y Forward Par Rate(미래의 coupon rate)는 다음 식으로 계산된 C를 말함 여기서 S(T,T_i)는 T시점에서 T_i 기간에 적용하는 Spot Rate

$$1 = \sum_{i=1}^{20} C * \exp(-T_i * S(T, T_i)) + 1 * \exp(-T_{20} * S(T, T_{20}))$$

- S(T,T_i)는 T시점에서 T_i 기간에 적용하는 Future Spot Rate로 그 값을 알 수 없으므로 위 식을 현재의 Forward Rate로 변환하면 다음과 같음

여기서 f(0,T,T;)는 현재 시점 0에 T시점부터 T; 기간의 Forward Rate임

$$1 = \sum_{i=1}^{20} C * \exp(-T_i * f(0, T, T_i)) + 1 * \exp(-T_{20} * f(0, T, T_{20}))$$

- 현재의 Spot Curve로부터 T 시점의 IRS5Y Forward Par Rate를 구하기 위해 위 식의 양변에 exp{-T*S(0,T)}(이후 exp(-T*S(T))로 표기)를 곱하면 다음과 같음

$$\exp(-T * S(T)) = \left[\sum_{i=1}^{20} C * \exp(-T_i * f(0, T, T_i)) + 1 * \exp(-T_{20} * f(0, T, T_{20}))\right] * \exp(-T * S(T))$$

- 여기서 $\exp(-T_i * f(0,T,T_i) * \exp(-T * S(T)) = \exp(-(T+T_i) * S(T+T_i))$ 이므로 다음 식과 같이 현재의 Spot Curve로부터 T 시점의 IRS5Y Forward Par Rate를 구할 수 있음

$$\exp(-T * S(T)) = \sum_{i=1}^{20} C * \exp(-(T + T_i) * S(T + T_i)) + 1 * \exp(-(T + T_{20}) * S(T + T_{20}))$$

- ⓑ CD Forward Rate 구하기
 - CD Forward Rate는 3개월 단위 무이표채이므로 다음과 같이 간단하게 구할 수 있음 CD Forward Rate = $\{df(T+T_{i+1})/df(T+T_i)-1\}/A_i$

여기서,
$$A_i = (T_{i+1}-T_i)/365$$
 $df(T+T_{i+1})는 T+T_{i+1}$ 시점의 Discount Factor

③ 채권가격 구하기

- ②에서 T 시점의 IRS5Y Forward Par Rate과 CD Forward Rate를 구하면 다음과 같이 T 시점의 이자금 액을 계산할 수 있음.

$$Cmoney_T = (((IRS5 - CD) * 2 + 0.03) * 10000) / 4$$

- 이자지급 시점을 T_1 , T_2 , T_3 , ..., T_n 이라 가정하면 Dual Index FRN채권의 가격은 다음과 같이 계산됨

$$P = \sum_{i=1}^{n} Cmoney_{i} * exp(-T_{i} * S(T_{i})) + 10000 * exp(-T_{n} * S(T_{n}))$$

5Y Forward Par Rate	CD Forward Rate	이丑 (IRS5Y-CD)*2+4%	카드 spot curve	PV
5.930%	4.910%	151.00	4.64%	149.23
6.029%	5.326%	135.16	4.89%	131.85
6.110%	5.172%	146.92	5.14%	141.33
6.203%	5.192%	150.56	5.40%	142.62
6.301%	5.522%	138.98	4.48%	129.74
6.387%	5.673%	135.70	5.58%	124.75
6.469%	5.825%	132.23	5.69%	119.66
6.547%	5.977%	128.50	5.82%	114.34
6.621%	5.774%	142.33	5.94%	124.47
6.683%	5.850%	141.68	6.04%	121.75
6.745%	5.925%	140.98	6.14%	119.03
6.803%	6.001%	140.13	6.22%	116.24
6.861%	6.398%	10,123.15	6.30%	8,244.94

가상채권조건

발행일	2002-07-02
만기일	2005-07-02
이자지급기간	3Month
이자계산	(IRS5Y-CD)*2+4%
발행프리미엄	220.04

평가일	2002-07-02
평가금액	10,000.00

Quanto 내재 순수 FRN 평가

- □ 기준금리가 외국의 단기 금리인 FRN
 - 기준금리로 국내의 금리를 사용하지 않고 외국의 금리를 사용하는 순수 FRN
 - 이자지급, 원금등의 모든 현금흐름의 자국의 통화로 이루어짐.
 - 발행 예) 도로공사 363회 : 6M LIBOR + 1.3% / 최초 표면이율 :
- 내재 Swap
 - 투자자는 Swap Bank와 다음과 Quanto Swap을 체결하여 고정금리 수취구조로 만들 수 있음

- Swap Bank가 환위험을 부담하게 됨

Quanto 내재 순수 FRN 평가

■ 평가 방법

- 6M LIBOR 금리의 Implied Forward Rates를 구하여 미래 현금흐름을 추정하고
- 이를 국내 발행사의 Spot Rate로 할인하여 평가함.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50	1.23% 1.31% 1.60% 2.13% 2.11% 2.78% 2.79% 3.42% 3.40% 4.10% 4.12%	62.00 63.21 65.36 72.50 85.69 85.35 101.98 102.31 118.05	61.27 61.74 63.09 69.14 80.77 79.51 93.88 93.08
0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50	1.60% 2.13% 2.11% 2.78% 2.79% 3.42% 3.40% 4.10%	65.36 72.50 85.69 85.35 101.98 102.31 118.05	63.09 69.14 80.77 79.51 93.88 93.08 106.12
1.00 1.25 1.50 1.75 2.00 2.25 2.50	2.13% 2.11% 2.78% 2.79% 3.42% 3.40% 4.10%	72.50 85.69 85.35 101.98 102.31 118.05	69.14 80.77 79.51 93.88 93.08 106.12
1.25 1.50 1.75 2.00 2.25 2.50	2.11% 2.78% 2.79% 3.42% 3.40% 4.10%	85.69 85.35 101.98 102.31 118.05	80.77 79.51 93.88 93.08 106.12
1.50 1.75 2.00 2.25 2.50	2.78% 2.79% 3.42% 3.40% 4.10%	85.35 101.98 102.31 118.05	79.51 93.88 93.08 106.12
1.75 2.00 2.25 2.50	2.79% 3.42% 3.40% 4.10%	101.98 102.31 118.05	93.88 93.08 106.12
2.00 2.25 2.50	3.42% 3.40% 4.10%	102.31 118.05	93.08 106.12
2.25 2.50	3.40% 4.10%	118.05	106.12
2.50	4.10%		
		117.50	10100
a ==	4.12%		104.39
2.75		134.95	118.49
3.00	4.28%	135.43	117.51
3.25	4.26%	139.61	119.71
3.50	4.87%	138.92	117.71
3.75	4.89%	154.20	129.13
4.00	4.93%	154.76	128.07
4.25	4.95%	155.64	127.28
4.50	5.44%	156.19	126.23
4.75	5.46%	168.41	134.51
5.00	5.10%	169.03	133.41
5.25	5.07%	160.12	124.89
5.50	5.49%	159.27	122.77
5.75	5.52%	169.77	129.33
6.00	5.77%	170.38	128.27
6.25	5.73%	176.69	131.45
6.50	6.18%	175.72	129.20
6.75	6.20%	186.94	135.83
7.00	5.43%	10187.62	7315.10

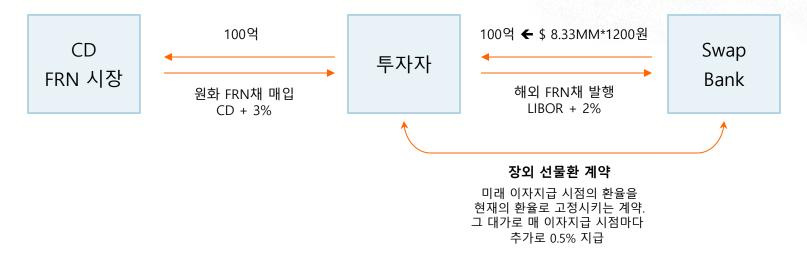
■ 기본 특징

- 양국의 단기 금리차이(CD LIBOR)가 이자 지급액을 결정하는 Dual Indexed FRN의 변종.
- 이자 및 원금의 지급이 모두 원화로 이루어지며 이자지급액의 결정은 다음과 같음.

$$2\times(CD-LIBOR_{USD})+\alpha$$

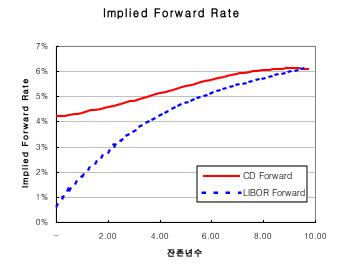
- 기준금리중 하나인 LIBOR 금리는 달러 Base 금리지만 모든 현금흐름은 원화로 이루어지는 Quanto 구조가 내재된 것으로 볼 수 있음.
- 양국의 단기금리 차이가 커질 경우 상대적으로 높은 이자수입이 기대되는 채권이며
- Quanto 구조를 고려할 경우 환위험없이 상대적으로 낮은 달러금리로 자금을 조달하여 CD금리로 자금을 운용하는 형태임.
- CD금리와 LIBOR 금리의 차이가 컸던 2002년 중반에 많이 발행되었음.

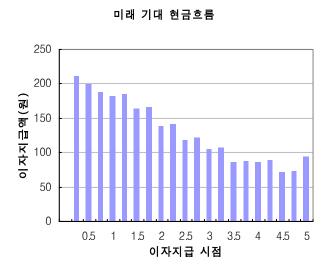
■ 내재 SWAP 구조


■ 구조 분석

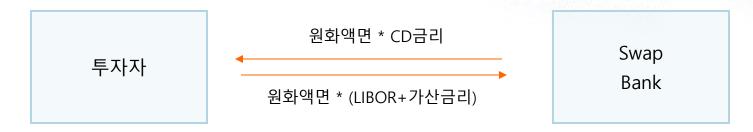
- 투자자 입장에서는 다음과 같이 구조분해가 가능

$$2(CD-LIBOR_{\mathfrak{g},USD})+2\%$$
 $=2CD-2LIBOR_{\mathfrak{g},USD}+2\%$
 $=2(CD+3\%)-2(LIBOR_{\mathfrak{g},USD}+2\%)$
 $=2(CD+3\%)-[2(LIBOR_{\mathfrak{g},USD}+2\%)] imes FX_0$
 $FX_{\mathfrak{g}}$: 발행시점의 원/달러 환율


- 즉, 다음과 같은 복합거래를 동시에 수행한 것과 동일함
 - LIBOR 금리로 \$를 조달(LIBOR 연동 해외FRN발행)
 - 조달된 \$를 발행시점의 환율로 원화로 전환하고
 - 이를 다시 CD연동 원화 FRN에 투자
 - LIBOR 연동 해외 FRN의 이자지급시 발생하는 환위험을 제거하기 위해 매 이자지급 시점에서
 - 적용되는 환율(UnKnown)을 발행시점의 환율(Known)로 고정시키는 환율계약을 투자은행과 체결


- 🧖 구조 분석 예
 - 환율이 1\$당 1200원인 때에 해외에서 100억을 조달하여 원화채권에 투자하는 경우
 - 매입 시점

- 이자 지급 시점 : CD가 4.5%이고 LIBOR가 1.5%인 경우
 - 수취: 100억 * (4.5% + 3%) / 4 = 187.5백만원
 - 지급 : \$ 8.33M * (1.5% + 2% +0.5%) /4 * 1200원 = 100백만원
 - 이때 이자지급 시점의 환율은 Swap Bank와의 계약으로 1200원으로 고정되어 있음
 - 장외 선물환 계약의 대가는 "LIBOR + 가산금리"에 포함될 수도 있고 계약시점에 일괄 지급할 수도 있음


- 평가방법1 : 장외 선물환 계약 내재 채권 (KBP 평가모형)
 - Swap Bank와의 장외 선물환 계약으로 환위험을 제거하는 대신 추가 이자를 지급하는 경우 양 시장의 내재 선도금리(Implied Forward Rate)을 추정하여 Quanto FRN의 가치를 평가할 수 있음.
 - 평가 방법
 - CD 금리의 Implied Forward Rate : 국내 Money Market 금리와 국내 이자율 스왑 시장을 이용하여 기간구조 도출
 - LIBOR 금리의 Implied Forward Rate: USD Money Market 금리와 USD 이자율 스왑 시장을 이용
 - 도출된 각 Implied Forward Rate을 이용하여 이자지급 조건이 만족되도록 미래 기대 현금흐름을 추정
 - 추정된 미래 기대 현금흐름을 발행사의 할인율로 할인하여 Quanto FRN의 가치 산출

- 평가방법2 : Differencial Swap
 - 동 구조의 채권을 Differencial Swap과 고정금리채의 합성채권으로 파악하여 평가할 수도 있음.
 - Differencial Swap은 원화 액면금액에 대하여 CD금리와 LIBOR 금리를 서로 교환하는 계약

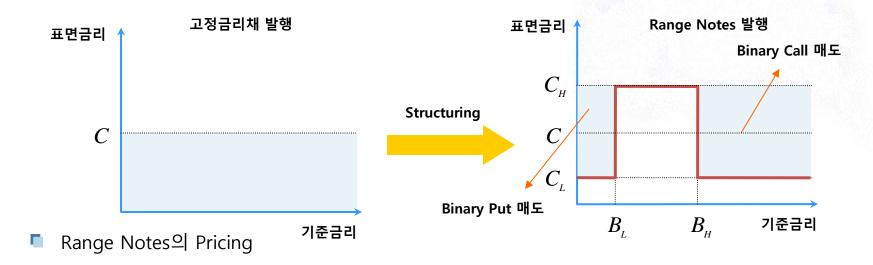
- 이와 같이 Differencial Swap이 내재된 채권으로 파악할 경우 환율과 LIBOR Forward 금리의 상관관계를 고려하여, LIBOR Forward에 다음과 같은 Quanto Adjustment를 한 후 미래 기대현금 흐름을 계산해야 하는 것으로 알려져 있음.

$$F_{adj.LIBOR} = F_i + F_i \rho_{FX,LIBOR} \sigma_{FX} \sigma_{LIBOR} t_i$$

양의 상관관계 $> F_{adj.LIBOR} > F_i$ > 미래 기대현금 흐름 감소 > 채권가치는 상대적으로 하락음의 상관관계 $> F_{adj.LIBOR} < F_i$ > 미래 기대현금 흐름 증가 > 채권가치는 상대적으로 상승

Flipper 평가

- Flipper의 구조
 - 1) 1년간 FRN + 2년차부터 Fixed rate 이표채 등
 - LG카드912(만기일 2005-2-20): 1년간 CD+30bp → 2년 이후 7% 이표채
 - 2) 1년간 Fixed rate 이표채 + 2년차부터 FRN 등
 - 도로공사325(만기일 2007-6-14): 1년간 8.7% 이표채 → 2년 이후 (국고5년-CD)*5+2%
- Flipper의 평가 방법
 - 1) 의 경우, 채권의 구조를 분해하여 평가하는 방법
 - 1년만기 FRN 매입 + 3년만기(발행만기) 이표채 매입 동기업이 발행한 1년만기 이표채 매도
 - 2) 의 경우, 1년만기 Fixed Rate 이표채 매입 + 2년차부터 Cash Flow가 일어나는 FRN으로 Forward Rate을 이용하여 평가
 - 3) 다만 가격 검증은 BDT모형 이용함


- Range Notes의 구조 분해
 - 기준금리가 일정 범위 안에 있을 때는 비교적 높은 이자를 지급하고, 범위를 벗어났을 때는 낮은 이자를 지급하는 변형 FRN
 - 투자자 측면에서 보면 Range Notes는 높은 금리를 지급하는 고정금리 채권을 매수하고, 동시에 발행자로부터 유럽형 이자율 Binary(Digital) Call, Put 옵션 Series를 매도한 구조

Range Notes = 고정금리채 - (Digital Call + Digital Put)

- > 고정금리채 : 표면금리 C_{u}
- > Call Option: if $R \ge B_H$ then $C_H C_L$, Else 0
- > Put Option: if $R < B_L$ then $C_H C_L$, Else 0
 - * Option은 매 이자지급 시점이 만기인 유럽형이며 Option의 가치는 이들의 합
- Notations
- > Upper Bound($B_{_{II}}$), Lower Bound($B_{_{L}}$)
- > High Coupon($C_{_{\!H}}$), Low Coupon($C_{_{\!\!H}}$), 동일만기 고정금리 YTM(C)
- > 기준금리(R), 만기(T), k번째 이자지급 시점(t_{ν})

Graphical Decomposition

- Range Notes가 고정금리채와 Digital Call, Digital Put의 합성채권이라는 사실을 이용

Range Note의 가치 = 고정금리채 가치 - (Call Premium + Put Premium)

- > 고정금리채의 가치는 발행사의 YTM이나 Spot으로 부터 계산
- ≥ 옵션 Premium은 Black 모형을 변형한 Reiner-Rubinstein 모형을 이용
- > 내재되어 있는 옵션계약 수는 이자지급 횟수와 동일

- Reiner-Rubinstein Model
 - Option이 만기에 In-The-Money로 끝났을 때만 $K(=C_{_H}-C_{_L})$ 를 주는 Cash-or-Nothing 옵션의 가격결정 공식.
 - Black-Scholes 옵션공식에서 Cash-or-Nothing이기 때문에 뒷부분만 남은 형태임.

k번째 이자지급 시점이 만기인 유럽형 Digital Option의 가치

Digital
$$Call_k = (C_H - C_L)e^{-rT}N(d)$$

Digital $Put_k = (C_H - C_L)e^{-rT}N(-d)$

where, $d = \frac{\ln(F/X) - 0.5\sigma^2/T}{\sigma\sqrt{T}}$
 $F = Forward\ Rate$,

 $X = B_U(Call)\ or\ B_L(Put)$

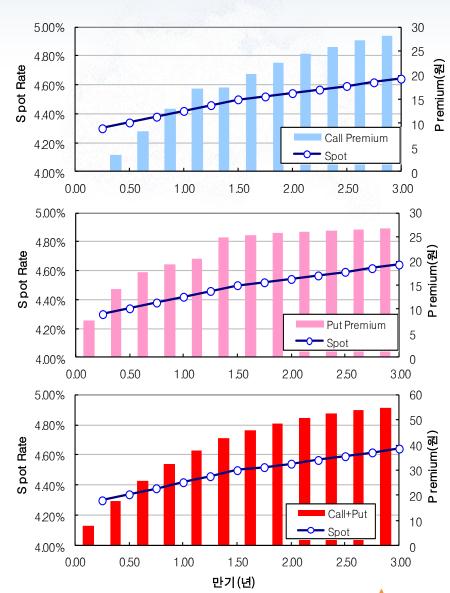
Range Notes Pricing 예

Reiner-Rubinstein 모형을 이용하여 아래와 같은 조건으로 발행된 채권의 내재 Option Premium을 계산해 보면,

> 만기: 3년

> 이자지급 조건

• Range: $3.75 \% \le CD91 \le 5.75 \%$


■ 이자지급액

Within Range : 6.7% 지급 Out of Range : 2.0% 지급

> 변동성 : 20%

> 내재된 옵션의 총가치 = 470.02

* CD Spot Rate Curve는 2003년 2월 10일의 Swap Market Data를 이용하여 추정하였음

Callable CMS Spread Accrual Note의 평가 1

- CMS Spread Note의 구조
 - KRW CMS 5Y 와 KRW CMS 2Y 금리의 spread에 의해 쿠폰이 결정되는 채권

$$Coupon = 4.25\% \times n / N$$

 $_n$: (CMS 5Y금리 - CMS 2Y금리) >=0 인 영업일수, : 이자 지급주기에 해당하는 총 영업일수

- 평가모형
 - □ 기본적인 방법론은 Monte Carlo simulation 을 사용함
 - □ 기초자산의 모형
 - CMS 2Y, CMS 5Y: Spread를 예측하기 위하여 **G2++** 모형을 사용함

$$r_{t} = x_{t} + y_{t} + \theta_{t}$$

$$dx_{t} = -k_{x}x_{t}dt + \sigma_{x}dz_{x}(t) \qquad dy_{t} = -k_{y}y_{t}dt + \sigma_{y}dz_{y}(t)$$

$$dz_{x}dz_{y} = \rho dt$$

● 할인금리(예.AA): One Factor Hull-White 모형을 사용함

$$dr_t = -k(\theta_t - r_t)dt + \sigma dz(t)$$

Callable CMS Spread Accrual Note의 평가 2

■ 구현방법

Calibration

CMS금리와 할인금리 사이의 상관계수를 고려한 시뮬레이션을 통하여 생성된 CMS금리 경로와 할인금리 경로를 기간구조를 이용하여 calibration함

■ Accrual factor를 계산

금리Path 각각의 단기 금리에 대응하는 par yield를 계산하여 Accrual factor를 계산

□ 순채권가치 산출

각각의 Libor_path에 따라 이자 지급일에 지급해야 하는 이표 금리를 결정하고 할인금리의 경로를 이용하여 현가를 구한 후 평균함

→순 채권(call option 을 고려하지 않은 채권)의 가치 결정

□ 옵션가격 산출

LSMC(Least Square Monte Carlo) simulation방법을 이용하여 Bermudan call option 가격을 산출함

□ 채권가치 산출

순채권의 가치에서 call option 의 가치를 차감한 결과

Callable CMS Spread Accrual Note의 평가 3

■ Bermudan Call 옵션의 평가모형

Least Square Monte Carlo (LSMC) Simulation (Regression-based Monte-Carlo Simulation) 참고문헌: Valuing American Options by Simulation: A Simple Least-Squares Approach (Regression1)

- -The Review of Financial Studies, 2001, Longstaff and Schwartz An Algorithm for Simulating Bermudan Option Prices on Simulated Asset Prices (Regression2)
- Journal of Derivatives, 2007, Huge and Rom-Poulsen

□ 특징

- ▶ Stopping time (조기행사 시점)을 결정하는 방법이 기존의 방법과 차별화됨
- ▶ 각 조기행사 시점에서 가능한 모든 정보를 활용하여 옵션의 기대 보유가치를 구하기 위해 회귀분석을 사용함

□방법

- ▶ 시뮬레이션으로 생성된 이자율 경로에 따라 결정되는 쿠폰과 할인율에 의해 기초 자산인 Non Callable Note의 가격을 이자 지급일마다 생성
- ➤ 옵션의 행사가능 시점을 T1, T2, ..., Tn 이라고 할 때 기초자산의 가치에 영향을 주는 상태변수들을 독립변수로, 기초자산을 종속변수로 하여 옵션행사 시점마다 regression(Regression1)을 실행하여 기초자산의 가격을 추정함
- ➤ Ti시점에서 추정된 기초자산의 가격(X) 중에서 내가격인 경로만을 선택하여 따라갈 경우, Ti+1 시점의 옵션가치를 Ti 시점에서 현가(Y)를 구하고, Y를 종속변수로 X를 독립변수로 하는 regression(Regression2)를 실행하여 보유가치를 추정함
- ▶ Regression1에서 추정된 기초자산의 가격을 이용하여 구한 옵션의 행사 가치가 Regression2에서 추정된 보유가치보다 크면 행사가치를, 그렇지 않으면 Ti+1 시점의 옵션가치를 Ti 시점에서 할인한 가치를 옵션가치로 함
- ➤ 각 경로에 따라 직전 옵션 행사 시점에서 옵션이 행사되었을 경우에는 다음 옵션 행사 시점에서는 옵션이 행사될 수 없음을 반영하여 최적의 옵션행사 시점 (stopping time)을 결정함
- ▶ 경로별로 최적의 옵션 행사 시점에 대응되는 옵션의 가치를 평균한 값을 구함

02 선물환 및 SWAP 평가

- 1. 통화선도 평가방법
- 2. IRS 평가방법
- 3. CRS평가방법

가. Fx Forward rate 결정

- □ 선도환(FX Forward) 계약의 개념
 - ▶ 선도환(FX Forward)은 서로 다른 통화의 금액을 미래 특정 시점에 교환하는 계약임

- Fx forward 환율 결정
 - ▶ 선도환율 결정: 현물환율 + 스왑포인트/10^(scaling factor)

CCY	KRW	JPY	EUR	CNY	HKD	AUD	CHF
Scaling Factor	0	2	4	4	4	4	4

➤ 1Y KRW/USD사례

Т	W1	M1	M2	М3	М6	Y1	Y2	Y3	Y4	Y5
스왑포인트	0.47	2.2	4.15	6.2	11.3	18.7	29	37	39	38

- 각 만기별 선도환율을 현물환율율에 스왑포인트를 더한 값으로 산출
- 예) 원/달러 현물환율 1100, 1년 스왑포인트 18.70 1년만기 선도환율= 1100 + 18.70/10^(0) = 1118.70

- □ Bid/Ask 스프레드와 계약일 평가가격
 - ▶ 2014-10-29 (KRW/USD) 현물환율 및 스왑포인트

Gubun	SPOT	W1	M1	M2	М3	М6	М9	Y1	Y2	Y3	Y4	Y5
MID	1047.3	0.3	1.1	2.45	3.65	6.6	8.561	10.5	13.7	13	8.2	2
BID	1047.3	0.1	0.1	0.45	0.65	1.6	1.55	1.5	11.45	13.25	3.45	-5.25
ASK	1047.3	0.5	2.1	4.45	6.65	11.6	15.57	19.5	15.95	12.75	12.95	9.25

▶ 계약환율 vs 잔여만기 선도환율

고객사	거래상대방	계약일	만기일	계약환율
** 운용사	** 은행	2014-10-29	2015-02-05	1049.4

- 3M 선도환율: (MID) 1050.95 (BID) 1047.95
- MID 기준으로 평가시 선도환율이 계약환율보다 높기 때문에 평가손익은 마이너스가 됨
- 만기가 길어질수록 BID/MID 스프레드가 확대됨 계약일 평가손실이 더욱 커질 수 있음

나. FX Forward 평가방법

□ 공정가액 산출방식 1 (통화스왑 평가방식)

공정가액 = S×[외국통화×EXP(-r_{Foreign}×T)] - [원화통화×EXP(-r_{Korea}×T)]

- 의미: 해당 통화선도 계약에 따른 외국통화 및 원화의 미래현금흐름을 평가시점의 현재가치로 환산하여 비교
- □ 공정가액 산출방식 2 (이자율 패리티 적용)
 - 와 $\mathcal{V}_{Foreign}$ 를 각각 자국과 외국의 연속형 무위험 이자율이라고 하면, IRP에 의해 다음이 성립함

$$\exp(r_{Korea} \cdot T) = \frac{F}{S} \exp(r_{Foreign} \cdot T)$$

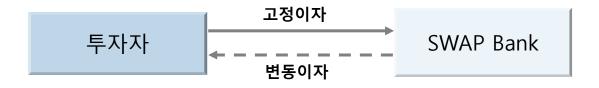
$$\Rightarrow \frac{F}{S} = \exp\left[\left(r_{Korea} - r_{foreign}\right)T\right]$$

▶ 이 때, 아래 이자율 패리티 공식을 위식에 대입하여 정리하면 다음과 같음

공정가액 = 외국통화×(F- F_0)×EXP(- r_{Korea} ×T)

나. FX Forward 평가방법

- □ 공정가액 산출 3 (가격통화 USD 기준)
- ▶ 매수통화기준의 가치와 매도통화기준의 가치의 차액을 가격통화인 USD금리로 할인하여 계산
- ▶ 다양한 통화의 거래를 평가하기 위해 매수통화 원금(Notional Amount)당 달러금액을 산출하여 최종 통화단위로 전환함


$$\left(\frac{\text{매수통화색면}}{\text{FWD}_{\P \leftarrow \text{Fsb}/\text{USD}}} - \frac{\text{매도통화색면}}{\text{FWD}_{\P \leftarrow \text{Fsb}/\text{USD}}}\right) \times \exp(-\mathbf{r}_{\text{USD}} \times \mathbf{T}) \times \text{FX}_{\text{KRW/USD}}$$

- □ 잔여만기에 해당되는 선도환율 계산
- ▶ 통화스왑 평가방식에서는 현물환율만을 사용
- ▶ 그러나, 공정가액 산출 2,3 에서는 원화, USD통화로 결제금액을 전환하기 위해서 선도환율을 계산해야함
- ➤ 잔여만기 전,후의 Grid Point에 해당되는 스왑포인트를 interpolation하여 정확하게 잔여만기에 해당되는 선도환율 계산

원/달러 스왑포인트: 11.3(6M), 18.7(1Y) 잔여만기(9M) 스왑포인트 = [(9M-6M)*18.7+(1Y-9M)*11.3)]/(1Y-6M) = 15

가. IRS 구조

- □ 이자율스왑의 개념
 - > 이자율스왑(Interest Rate SWAP ; IRS)은 명목원금(Notional Principal)에 대한 일정한 고정금리와 변동금리를 특정 시점에서 교환하는 계약임
 - 스왑은 연속적인 선도거래(Series of Forward Contracts)임
 단, 이자율선도거래의 경우 정해진 계약기간 초일에 결제차액이 정산되지만 IRS의 경우 정해진 계약기간 말일에 결제차액이 정산되는 차이가 있음
- □ 이자율스왑의 현금흐름

- ▶ 투자자는 SWAP Bank로부터 변동금리(Libor, CD 등)를 수취하고 그 대가로 고정금리를 지급 : 투자자(long SWAP), SWAP Bank(short SWAP)
- ▶ long SWAP은 이자율 상승시 이익이 발생하는 포지션이며, short SWAP은 이자율 하락시 이익이 발생하는 포지션임

나. 평가절차

□ IRS의 평가절차

다. 평가방법

- ☐ Money Market Data
 - USD IRS: 로이터 단말기의 영국 ICE 고시 Libor Rate (로이터 'LIBOR01'), CME, LIFFE 공시 Interest rate Futures Closing Price
 - KRW CRS: USD Money Market Data와 KRW/USD 스왑포인트를 이용하여 역산한 금리
- Swap Rate Data
 - 평가기준일 오후 5시(한국시간) 시장에서 호가되는 SWAP Rate: (1),2,3,4,5,7,10,20Y
 - USD IRS: 로이터에서 고시하는 Composit MID값 사용 ('USDSB3L=RR' 참고)
 - KRW CRS: 5개 브로커(ICAP, TULLETT PREBON, KOREA MONEY BROKER, Tradition, GFI)의 BID, ASK호가에서 각 만기별 MIN, MAX 값을 제외하고 3개사 평균을 구하여 중간값을 MID값으로 사용함

원화 CRS 금리 산정사례

원화 3Y CRS	Bid	Ask	
ICAP	1.33	1.73	
PREBON	1.23	1.83	
KMB	1.03	2.03	
Tradition	1.225	1.825	
GFlbroker	1.43	1.63	
평균	1.2617	1.7950	
MID	1.5283		

IRS Market과 달리 Bid-Ask spread가 20~60bp 임호가중개기관별 편차가 큼

다. 평가방법(계속)

- Discount Factor 계산
 - > Grid Point에 해당하는 Date설정: 1일, 91일, 180일, 1,2,3,4,5,7,10년
 - ➤ Grid Point에 해당하는 대표적인 시장이자율을 파악
 - > 대표적 시장이자율을 이용하여 Missing Rate를 3개월 단위로 도출: Linear Interpolation

Grid Point	Par Rate
6Y	$R_{6Y} = \frac{(D_{7Y} - D_{6Y}) \times R_{5Y} + (D_{6Y} - D_{5Y}) \times R_{7Y}}{D_{7Y} - D_{5Y}}$
8Y	$R_{8Y} = \frac{(D_{10Y} - D_{8Y}) \times R_{7Y} + (D_{8Y} - D_{7Y}) \times R_{10Y}}{D_{10Y} - D_{7Y}}$
9Y	$R_{9Y} = \frac{(D_{10Y} - D_{9Y}) \times R_{7Y} + (D_{9Y} - D_{7Y}) \times R_{10Y}}{D_{10Y} - D_{7Y}}$

다. 평가방법(계속)

> 각 Grid에 해당하는 Discount Factor 도출

time node	n	할인계수	Alpha (Year fraction)
О/И	1	$DF_1 = \frac{1}{1 + r_1 \times \alpha_1}$	$\alpha_1 = \frac{D_{O/N} - D_0}{D_Y}$
3M	2	$DF_2 = \frac{1}{1 + r_2 \times \alpha_2}$	$\alpha_2 = \frac{D_{3M} - D_0}{D_Y}$
6M	3	$DF_{3} = \frac{DF_{1} - R_{0M} \sum_{i=2}^{q-1} \alpha_{i-1,i} \times DF_{i}}{1 + R_{0M} \times \alpha_{2,3}}$	$\alpha_{2,3} = \frac{D_{0M} - D_{3M}}{D_{\gamma}}$
9M	4	$DF_4 = \frac{DF_1 - R_{0M} \sum_{i=2}^{q-1} \alpha_{i-1,i} \times DF_i}{1 + R_{0M} \times \alpha_{3,4}}$	$\alpha_{3,4} = \frac{D_{0M} - D_{6M}}{D_{\gamma}}$
1 Y	5	$DF_{6} = \frac{DF_{1} - R_{1Y} \sum_{i=2}^{a-1} \alpha_{i-1,i} \times DF_{i}}{1 + R_{1Y} \times \alpha_{4,6}}$	$\alpha_{4,6} = \frac{D_{1Y} - D_{9M}}{D_Y}$
:	:	:	:
ИУ	4N+1	$DF_{4N+1} = \frac{DF_1 - R_{NY} \sum_{i=2}^{4N} \alpha_{i-1,i} \times DF_i}{1 + R_{NY} \times \alpha_{4N,4N+1}}$	$\alpha_{4N,4N+1} = \frac{D_{NY} - D_{4N-1}}{D_Y}$

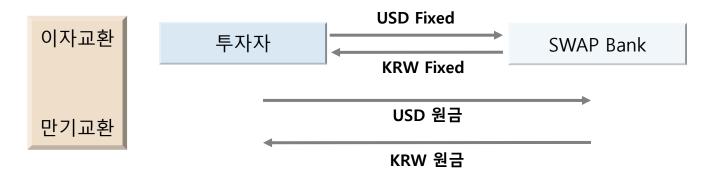
* 단,
$$Dy = 365$$
, 예제는 1년 단위 가정

> SWAP계약상 Cash Flow 발생 시점에 해당하는 Discount Factor 도출 : Exponential Interpolation

다. 평가방법(계속)

- □ Forward Rate 산출
 - > Forward rate는 앞에서 구한 Discount Factor를 이용하여 역산하여 계산함

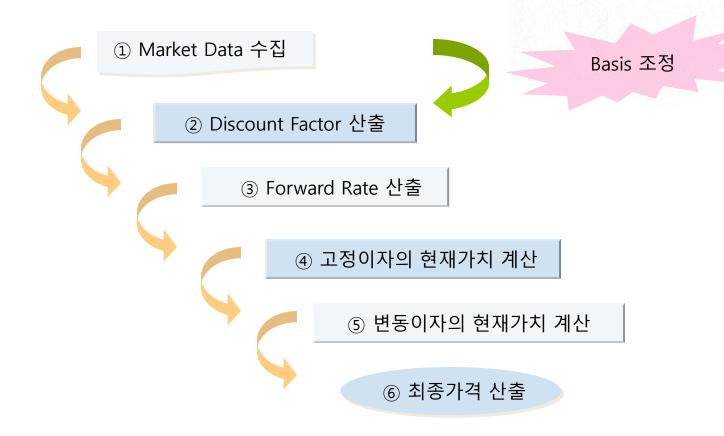
$$f_{t(n,n-1)} = (\frac{DF_{n-1}}{DF_n} - 1) \times \frac{1}{t_{n,n-1}}$$


- □ 고정이자의 현재가치 계산
 - > 매기간 중의 스왑 고정이자에 해당하는 현금흐름을 각 기간에 해당하는 Discount Factor를 곱하여 산출함
- □ 변동이자의 현재가치 계산
 - > Forward rate에 해당하는 현금흐름을 각 기간에 해당하는 Discount Factor를 곱하여 산출함
- □ 스왑가치의 산출
 - > 고정금리 부분과 변동금리 부분의 현금흐름의 차액을 계산하여 산출함

CRS 평가방법

가. CRS 구조

- □ 통화스왑의 개념
 - 이자율스왑이 동일한 통화에 대해 서로 다른 금리기준을 교환하는 것인 반면, 통화스왑(Currency SWAP)의 경우 서로 다른 통화가 기준이 되며 이자율스왑과 달리 만기에 원금을 교환하는 것이 일반적임
- □ 통화스왑의 종류
 - Currency SWAP : 서로 다른 통화에 대해 고정금리와 고정금리를 교환하는 것으로 좁은 의미의 통화스왑임
 - > Cross Currency Coupon SWAP : 서로 다른 통화에 대해 고정금리와 변동금리를 교환
 - ➤ Cross Currency Basis SWAP : 서로 다른 통화에 대해 변동금리와 변동금리를 교환


□ 통화스왑의 현금흐름

CRS 평가방법

나. 평가 절차

□ CRS의 평가절차

WE MAKE THE STORY

Contact Point:

한국자산평가

서울시 종로구 율곡로88 삼환빌딩 4층

대표전화: 02-2251-1300 시스템장애: 02-2251-1433 고객지원: 02-2251-1400

팩스: 02-2251-1451

E-Mail: marketing@koreaap.com

www.koreaap.com

